

2021eko maiatzaren 21eko Gerentearen erabakia. Azterketaren data: 2022ko urtarrilaren 28an.

Azterketaren lehen zatia 100 galderak + 10 erreserbarako 150 minutu

Adierazi zein den erantzun zuzena:

- 1. DNA polimeroa osatzen duten nukleotidoak hauek dira:
 - A. Adenina, guanina, zitosina, timina
 - B. dATP, dCTP, dGTP, dTTP
 - C. ATP, GTP, CTP, TTP
 - D. ddATP, ddCTP, ddGTP, ddTTP
- 2. DNAren helize bikoitza egonkorra da, eta hau da arrazoia:
 - A. Bi harizpien baseen artean hidrogeno-zubiak eratzea
 - B. Base auzokideen arteko π - π interakzioak
 - C. Aurreko bi erantzunak batera
 - D. Watson eta Crick
- 3. DNAren erreplikazioan:
 - A. Harietako batek molde gisa jokatzen du
 - B. Bakterioen DNA bakarrik erreplika daiteke
 - C. G ez da inoiz C-rekin parekatzen
 - D. A-k eta T-k elkar aldaratzen dute
- 4. Zertan bereizten dira kimikoki DNA eta RNA?
 - A. Kolorean
 - B. RNAk uraziloa du. eta DNA timina
 - C. RNAk erribosa du, eta DNAk desoxirribosa
 - D. Aurreko bi erantzunak batera
- 5. RNA zelularra honela sailkatu dezakegu:
 - A. RNA kodetzailea eta RNA ez-kodetzailea (funtzionala)
 - B. RNA mezularia (mRNA)
 - C. RNA erribosomikoa (rRNA)
 - D. Transferentziako RNA (tRNA)
- 6. poli-A isatsak hau adierazten digu:
 - A. RNA prokarioto bat dugula
 - B. RNA eukariotoa dela
 - C. Exon bat dela
 - D. Intron bat dela

Universidad Euskal Herriko del País Vasco Unibertsitatea

"SGIker-eko Goi-Mailako Teknikaria (Genomika)" Lan-Poltsa zabaltzeko hautatze-prozesua.

- 7. Zelula baten transkriptomak hauek hartzen ditu barnean:
 - A. MikroRNAk bakarrik
 - B. mRNAk
 - C. Zelularen RNA guztiak
 - D. RNA editagarriak
- 8. Hasiera-kodona, normalean, hau da:
 - A. GGG (Gly)
 - B. AUU (Ile)
 - C. UUU (Phe)
 - D. AUG (Met)
- 9. Azido nukleikoen erauzketak honela egiaztatzen dira:
 - A. Kuantifikazio bidez
 - B. Elektroforesi bidez
 - C. Aurreko bi erantzunak zuzenak dira
 - D. Ez dira egiaztatzen
- 10. RNA zelularra erauztean, % 80-90 honelakoa da:
 - A. Erribosomikoa
 - B. Mezularia
 - C. Transferentzia
 - D. Mikroa
- 11. RNA erauztean, zein da arazo nagusia?
 - A. Mitokondrioak
 - B. Eskularruekin lan egitea
 - C. Prestakuntzan erabilitako etanola
 - D. RNA degradatzen duten entzimak (RNAsak)
- 12. Azido nukleikoak kontserbatzeko tenperatura egokia
 - A. -20 °C-an DNA eta -80 °C-an RNA
 - B. 4 Celsius graduan
 - C. -20 °C-an
 - D. Beti giro-tenperaturan
- 13. Azido nukleikoaren kontzentrazioa uhin-luzera honetako absorbantziaren bidez kalkulatzen da:
 - A. 230 nm
 - B. 260 nm
 - C. 280 nm
 - D. 260 nm/280 nm

Universidad del País Vasco Unibertsitatea

"SGlker-eko Goi-Mailako Teknikaria (Genomika)" Lan-Poltsa zabaltzeko hautatze-prozesua.

- 14. Azido nukleikoen purutasun ideala honela adierazten da:
 - A. 230/280 ratioa
 - B. 260/280 ratioa, 1,8 DNA eta 2,0 RNA
 - C. Kolore zuria
 - D. Kolore zeharrargia
- 15. DNAren 260 nm-ko ODa honen berdina da:
 - A. $30 \,\mu g/ml$
 - B. $40 \mu g/ml$
 - C. $50 \,\mu g/ml$
 - D. $60 \,\mu g/ml$
- 16. Neurketa fluorimetrikoak:
 - A. ez dira erabiltzen RNArako
 - B. 260/280 ratio hobea ematen digute
 - C. aurreko biak
 - D. askoz sentikorragoak dira espektrofotometrikoak baino
- 17. Azido nukleikoen kontzentrazioa eta kalitatea neurtzeko, zer tresna joko zenituzke ezinbestekotzat genomika-zerbitzu batean?
 - A. Nanodrop
 - B. Oubit
 - C. Bionalyzer
 - D. Haiek guztiak
- 18. Zein da RNA totalaren integritatea neurtzeko Gold Standard-a?
 - A. RIN zenbakia
 - B. Fluorometroa
 - C. Espektrofotometroa
 - D. Ez dago Gold Standard-ik
- 19. NGSko laginen prestakinen kalitatea honekin azter dezakegu:
 - A. Bioanalyzer
 - B. Agarosa-gela
 - C. Bietatik
 - D. Begi hutsez
- 20. PCRa biologia molekularreko teknika bat da, eta:
 - A. Nitrogeno likidoa behar du
 - B. Aurkitu zuenari Nobel saria eman zioten
 - C. Oso gutxi erabiltzen da
 - D. Tenperatura konstantean egiten da

- 21. PCR batean, primer batean anplifikatu ahal izateko, ezinbestekoa da:
 - A. Haren base guztiak anplifikatu behar den DNAren baseen osagarriak izatea.
 - B. Mismatch-ak izan ditzake, betiere baldin eta 3' basea osagarria bada
 - C. Mismatch-ak izan ditzake, betiere baldin eta 5' basea osagarria bada
 - D. Aurreko erantzunetako bat ere ez da zuzena
- 22. Zer dakar berekin nested PCR batek?
 - A. Jatorrizkoa baino zati txikiago bat lortzea
 - B. Jatorrizkoa baino zati luzeago bat lortzea
 - C. PCRa ez sekuentziatzea
 - D. PCRa sekuentziatzea
- 23. RT-qPCRen normalizazioan erabiltzen diren geneei honela esaten zaie:
 - A. Itu-geneak
 - B. Gene isilak
 - C. Erreferentzia-geneak
 - D. Problema-geneak
- 24. qPCRaren NTCen (No Template Control) emaitzak hauek dira:
 - A. Aukerakoak esperimentu guztietan
 - B. Kalkulatu ezin diren balioak
 - C. Funtsezkoak edozein esperimentutan
 - D. Balio neutroak
- 25. Tarte dinamiko lineala RT-qPCR batean:
 - A. Balio automatiko bat da
 - B. Behar ez den balio bat da
 - C. Magnitude-ordena bat betetzen du
 - D. Gutxienez kontzentrazioko 3 magnitude-ordena hartzen ditu
- 26. Murrizketa-entzimek DNA ebakitzen dute, eta:
 - A. Mutur kamutsak uzten dituzte
 - B. Mutur itsaskorrak uzten dituzte
 - C. Aurreko biak, entzimaren arabera
 - D. EcoRIk bakarrik ebakitzen du
- 27. Nola egiaztatzen da nahi den klonajea lortu dela?
 - A. Txertatuaren tamainagatik eta DNAren sekuentziazioagatik
 - B. Ez dago egiaztatu beharrik
 - C. Ligasa egoki bat erabiliz
 - D. Behar den denbora itxaronda

- 28. Klonaje-bektore sinpleenak hauetan oinarritzen dira:
 - A. BACetan (Bacterial Artificial Chromosome)
 - B. *E. coli*ren plasmidoetan
 - C. Uretako landareetan
 - D. Aireko sustraietan
- 29. DNAren Sanger sekuentziazio kapilar automatizatuan, hauek ezinbestekoak dira:
 - A. Fluoreszentziaz markatutako ddNTPak
 - B. Fluoreszentziaz markatutako dNTPak
 - C. FAMez markatutako DNA moldea
 - D. ROXez markatutako DNA moldea
- 30. DNA-laginak Sanger sekuentziaziorako prestatzean:
 - A. Termometroa behar da
 - B. Erabateko iluntasuna behar da
 - C. Giro-tenperaturak 4 °C izan behar du.
 - D. Termoziklagailu bat behar da
- 31. Sanger sekuentziazioan, akats-tasa:
 - A. Ez da balio interesgarria
 - B. Oso handia da
 - C. Oso txikia da
 - D. Ezin da kalkulatu
- 32. Sekuentziagailu kapilar batean lortutako sekuentzien luzera:
 - A. Megabase batzuetakoa izan daiteke
 - B. Kapilarraren luzeraren araberakoa da, baina ez da iristen 2 kb-ra
 - C. 150 bp-koa da beti
 - D. 500 bp-koa da beti
- 33. Mikrosateliteek edo STRek hau dute:
 - A. DNA zati aleatorioak
 - B. RNA zati aleatorioak
 - C. 13 bp edo gutxiagoko errepikapenak
 - D. 25 bp-rainoko errepikapenak
- 34. Sekuentziagailu automatikoek mikrosateliteak azter ditzakete:
 - A. Erabilitako fluorokromoen araberako matrizeak aplikatuz
 - B. Matrize mota bakarra dago fluorokromo guztientzat
 - C. D eta E iragazkia aplikatuz
 - D. G5 iragazkia aplikatuz

Universidad del País Vasco Unibertsitatea

"SGlker-eko Goi-Mailako Teknikaria (Genomika)" Lan-Poltsa zabaltzeko hautatze-prozesua.

- 35. Nondik datoz mikrosateliteen analisien laginak?
 - A. PCR batetik
 - B. Qubit-etik
 - C. Nanodrop-etik
 - D. Harea-bainu batetik
- 36. Zertarako balio digu DNA mitokondrialak (mtDNAk)?
 - A. X kromosoma bilatzeko
 - B. Y kromosomaren tamainaren arabera bereizteko
 - C. Aitaren herentzia aztertzeko pedigri batean
 - D. Amaren herentzia aztertzeko pedigri batea
- 37. Aitatasun-probetan, SNP (Single Nucleotide Polymorfism) hauek erabiltzen dira DNAren markatzaile gisa:
 - A. Y kromosomaren SNPak
 - B. mtDNAren SNPak
 - C. Autosomen SNPak
 - D. Aurreko guztiak
- 38. Auzitegiko genetikan aztertutako laginak:
 - A. Harrizko ontzietan gorde behar dira
 - B. Trazabilitatea eta zaintza akreditatu behar dituzte
 - C. Ezin dira gizakienak izan
 - D. Ezin dira gorde
- 39. Genotipatzeko hiru plataforma mota daude: ahalmen handiko, ahalmen ertaineko eta ahalmen txikiko plataformak.
 - A. Guztiek aurrez diseinatutako genotipatze-paneletarako bakarrik funtzionatzen dute
 - B. Ezin dira erabili giza genotipatzerako
 - C. Illuminaren iScan System ekipamendua ahalmen handi eta ertainekoen barruan kokatzen da
 - D. Illuminaren MiSeg sistemak ez du balio genotipatzeko
- 40. Applied Biosystems-en Open Array-ak
 - A. Tagman zunden bidezko genotipatzeetan oinarrituta daude
 - B. Landareen genotipatzeetan baino ez da erabiltzen
 - C. Ez dute balio kanal anitzeko pipetekin lan egiteko
 - D. Ez dute NTCrik behar
- 41. Mikroarrayen hibridazioa eta detekzio fluoreszentea
 - A. Metodo perfektua da SNP gutxi aztertu behar direnean
 - B. PCR zatiek 600 bp ingurukoak izan behar dute, plataforma honekin aztertu ahal izateko
 - C. GeneChip system (Affymetrix) plataformaren oinarria da
 - D. Mikroskopio baten bidez azter daiteke

- 42. NGS datuen analisia egiteko liburutegiak prestatzean
 - A. Ezinbestekoa da DNA sonikatzea
 - B. Metodo entzimatikoak edo metodo fisikoak erabil ditzakegu
 - C. Erabateko iluntasuna behar da
 - D. Estreptabidina erabiltzen dugu beti
- 43. NGS sekuentziazioan, hau lortzen da:
 - A. Sanger sekuentziazioan baino base gutxiago
 - B. kb gutxi
 - C. Gutxienez, zenbait Tb
 - D. Mb, Gb, Tb, sekuentziagailuaren arabera
- 44. NGSko serie berean zenbait lagin nahas ditzakegu
 - A. Indibiduo berarenak badira
 - B. Indexatuta badaude
 - C. Liburutegiak batera prestatu badira
 - D. Erantzun guztiak faltsuak dira
- 45. NGS plataformak lortutako sekuentzien luzeraren arabera sailkatu daitezke
 - A. PacBio-k eta Oxford Nanopore-k sekuentzia luzeak eskaintzen dituzte (kb), eta Illumina-k eta IonTorrent-ek laburrak
 - B. Oxford Nanopore-ren plataforma da sekuentzia luzeak eskaintzen dituen bakarra
 - C. PacBio-ren plataforma da sekuentzia luzeak eskaintzen dituen bakarra
 - D. Illumina-ren sekuentziagailuek 150 bp-ko sekuentziak eskaintzen dituzte beti
- 46. NGS plataformak sailkatzeko beste modu bat da kontuan hartzea ea sekuentziazio-prozesuan fluoreszentzia (argia) detektatzen duten edo beste sistema batzuk erabiltzen dituzten (post-light sistemak)
 - A. PacBio-k eta Oxford Nanopore-k ez dute argia detektatzen, post-light plataformak dira
 - B. IonTorrent izan zen fluoreszentzia detektatzen zuen lehen plataforma
 - C. Illumina izan zen protoiak detektatzen zituen lehen plataforma
 - D. PacBio-k eta Illumina-k fluoreszentzia detektatzen dute, IonTorrent-ek protoiak detektatzen ditu eta Oxford Nanopore-k aldaketa elektrikoak detektatzen ditu
- 47. MinION sekuentziazio-gailu bat da
 - A. Sakelako telefonoa baino txikiagoa da
 - B. Nitrogeno likidoa behar du funtzionatzeko
 - C. Laborategi oso espezializatuetan bakarrik erabil daiteke
 - D. Merkatuko lehen NGS sekuentziagailua izan zen

- 48. 16S rRNA genetik abiatutako analisi metagenomikoa
 - A. Abiapuntua gorozkien DNA da beti
 - B. Lurzorutik ateratako DNAtik abiatzen da
 - C. 16S genearen eskualde aldakorrak handitzen dira
 - D. 16S genearen eskualde ez-aldakorrak handitzen dira
- 49. Metagenomikan, shoutgun metodoa erabiliz gero
 - A. DNA gizakiena bakarrik izan daiteke
 - B. 16S genearekin baino bereizmen taxonomiko eta funtzional hobea lor dezakegu
 - C. Konputazio-kostuak aurrezten ditugu
 - D. Ostalariaren DNA ez da detektatzen
- 50. Gaur egun, analisi metagenomikoak
 - A. Nekazaritzako elikagaien azterketetan bakarrik erabiltzen dira
 - B. Azterketa espazialetan bakarrik erabiltzen dira
 - C. Biologiaren edozein diziplinatan erabiltzen dira
 - D. Edozein laborategi filologikotan erabiltzen dira
- 51. Hauek puntu kritikoak dira analisi metagenomiko mota guztietan:
 - A. Protokoloak egun egokian hastea
 - B. Beti teknikari berak manipulatzea laginak
 - C. Errotuladore gorria ez erabiltzea hodi edo plaketan errotulua jartzeko
 - D. DNA behar bezala erauztea eta datu-baseekin alderatzea
- 52. Mikrobiotaren analisietan, zer adierazten du Shannon-en indizeak?
 - A. Alfa dibertsitatea
 - B. Beta dibertsitatea
 - C. Bi dibertsitate motak
 - D. Dibertsitaterik ez dagoela
- 53. OTU taula batek zer dauka?
 - A. Lagin bakoitzean unitate taxonomiko bakoitzerako behatutako sekuentzien kopurua
 - B. Zenbaketa bakoitzean lortutako lagin kopurua
 - C. Sekuentzien datu hamartarrak dituen excel bat
 - D. ASCII kodean idatzitako sekuentziak dituen excel bat
- 54. Espresio geniko diferentzialaren RNAseq bidezko analisi transkriptomikoetan
 - A. Sekuentziatutako zatiek gutxienez 500 bp izan behar dituzte
 - B. Sekuentzia kopurua zenbatzen dugu, eta zati laburrak izan ohi dira
 - C. Oso luzeak diren zatiak zenbatzen ditugu
 - D. RNA seg sekuentziak ez dira erabiltzen analisi transkriptomikorako

Universidad del País Vasco Unibertsitatea

"SGIker-eko Goi-Mailako Teknikaria (Genomika)" Lan-Poltsa zabaltzeko hautatze-prozesua.

- 55. RNA seq-en liburutegiak prestatzean, rRNAren deplezioak hau saihesten du:
 - A. RNA totala sekuentziatzea
 - B. RNA exogenoa sekuentziatzea
 - C. RNA gehienbat erribosomikoa sekuentziatzea
 - D. RNA gehienbat mezularia sekuentziatzea
- 56. RNAren zuzeneko sekuentziazioak (dRNA)
 - A. Ez du behar alderantzizko transkripziorik
 - B. mRNA osoak lor ditzake
 - C. Ez du aldatzen RNA
 - D. Aurreko erantzun guztiak zuzenak dira
- 57. Genomaren sekuentziazio oso (WGS) batean behar den estaldura
 - A. 30x da beti
 - B. 50x da beti
 - C. 100x da beti
 - D. Ebatzi behar dugun problemaren araberakoa da
- 58. WGSko liburutegiak prestatzeko, zer behar da?
 - A. DNA zatikatuta ez egotea
 - B. DNAk tamaina jakin bat izatea erabiliko den teknologiaren arabera
 - C. Bakterioen DNAk plasmidorik ez izatea
 - D. DNA birikoa ostalariaren DNArekin nahasita egotea
- 59. Conting-en mihiztatze baten kalitatearen neurri bat N50 balioa da, eta hau adierazten du:
 - A. Lortutako conting guztien erdian dauden conting-en luzera, base kopurutan, tamainaren arabera ordenatuta
 - B. Conting-ik handienak zenbat base dituen
 - C. Conting-ik txikienak zenbat base dituen
 - D. Lagin baten zenbat kopia ditugun
- 60. NGS bidezko exoma-sekuentziazioa (WES) asko erabiltzen da
 - A. Bakterioen analisi molekularrean
 - B. Birusen diagnostikoan
 - C. Patologia askoren giza diagnostiko klinikoan
 - D. Ikerketa nuklearrean
- 61. WES bidez cfDNAko (zelula libreen DNAko) alterazio somatikoak azter daitezke, biomarkatzaile posibleak bilatzeko.
 - A. Teknikak sentikortasun handia du (% 90)
 - B. Oso teknika eztabaidatua da oraindik potentzial klinikoa izateko
 - C. Teknika ongi estandarizatua dago
 - D. Teknikak fidagarritasun handia du (% 90)

2021eko maiatzaren 21eko Gerentearen erabakia. Azterketaren data: 2022ko urtarrilaren 28an.

62. WES azterketetarako liburutegiak sortzeko

- A. Laborategi bakoitzak bere sistema sortzen du
- B. Hainbat kit komertzial daude
- C. Protokolo jakin bat baino ezin da erabili
- D. Garrantzitsua da tenperatura konstantean lan egitea

63. Nolakoak dira fastq fitxategiak?

- A. Fasta fitxategi berak dira
- B. Sekuentziak bakarrik gordetzen dituzte
- C. Kalitatea bakarrik gordetzen dute
- D. Sekuentzia eta haren kalitatea dauzkate ASCII kodearekin

64. Zer esan nahi du NGSan 30eko "quality score" bat izateak?

- A. Base okerren probabilitatea 1000tik 1 izatea
- B. Base okerren probabilitatea 100etik 1 izatea
- C. Base okerren probabilitatea 500etik 1 izatea
- D. Base okerren probabilitatea 10000tik 1 izatea

65. Fastq-ek eta Fastqc-ek esanahi bera dute?

- A. Bai, C batean bakarrik dira desberdinak
- B. Bai, sekuentzia-fitxategiak dira
- C. Ez, Fastqc sekuentzien kalitatea ikusteko aplikazio bat da
- D. Espero den emaitzaren arabera

66. Analisi primarioa NGSan

- A. Basecalling delakoa da, hau da, irudiak edo seinaleak sekuentzietara pasatzea
- B. Sekuentziazio-erreakzioa bera da
- C. Sekuentzia bat analizatzen den lehen aldia da
- D. Protokolo bat egiten den lehen aldia da

67. Scaffold batek eta conting batek gauza bera esan nahi dute

- A. Baldin eta biek sekuentziak zenbatzeko balio badute
- B. Biak zenbaki berberek definitzen badituzte
- C. Jatorrian duten informazio motaren arabera
- D. Ez, *scaffold* bat *conting* multzo bat da, *read*etatik lortutako informazioaren arabera ordenatu eta orientatua

68. Genomika-zerbitzu batean, laginen trazabilitatea

- A. Ez da beharrezkoa ikuspuntu guztietatik
- B. Ezinbestekoa eta nahitaezkoa da gutxieneko kalitate-bermearekin lan egiteko
- C. Lagin arriskutsuei bakarrik aplikatu behar zaie
- D. Giza laginei bakarrik aplikatu behar zaie

- 69. Zer da laborategi bateko informazioaren kudeaketa?
 - A. Laborategi bateko fitxategien multzoa
 - B. Laborategi bateko dokumentuen multzoa
 - C. Informazioaren bizi-zikloa, lortzen denetik artxibatzen edo ezabatzen den arte, kontrolatzen duten prozesuen multzoa.
 - D. Informazioaren eta komunikazioen teknologia (IKTa) inoiz sartzen ez den prozesu-multzoa
- 70. Zer eduki behar luke kudeaketako datu-base batek genomika-zerbitzu batean?
 - A. Baliabideak (langileak eta ekipamenduak), kudeaketa komertziala (eskaintzak, eskaerak), erosketak eta hornitzaileak, proiektuen kudeaketa, gorabeherak, dokumentuak eta softwarea
 - B. Sekuentzien eta proiektuen kudeaketa bakarrik
 - C. Erabiltzaileekin egindako bileren akten kudeaketa bakarrik
 - D. Proiektuen emaitzen kudeaketa bakarrik
- 71. Lagineko elementuen banaketa normalean oinarritzen diren estatistika-probak
 - A. Proba parametrikoak dira
 - B. Proba ez-parametrikoak dira
 - C. Lagin txikietarako probak dira
 - D. Errore-probabilitate handia duten probak dira
- 72. Sakabanatze-neurrietan, honela erabil ditzakegu kuartilak:
 - A. Bigarren kuartila erabiliena da mota guztietako azterketetan
 - B. Lehen kuartilak (25 pertzentila) bere azpian uzten du datuen % 25, eta hirugarren kuartilak (75 pertzentila) % 75
 - C. Lehen kuartilak (75 pertzentila) bere azpian uzten du datuen % 75, eta hirugarren kuartilak (25 pertzentila) % 25
 - D. Azken kuartila baztertu egiten da beti
- 73. P balio esanguratsuak emateko, hau erabili behar dugu:
 - A. Zifra dezimal bat gutxienez
 - B. Bi zifra dezimal gutxienez
 - C. Hiru zifra dezimal gutxienez
 - D. Lau zifra dezimal gutxienez
- 74. Nukleotido-sekuentzien datu-baserik garrantzitsuenak hauek dira:
 - A. Pubmed eta OMIM
 - B. Uniprot eta SGD
 - C. Flybase eta KEGG
 - D. NCBI, EMBL, DDBJ

- 75. WGSren sekuentzietarako GenBank-era sartzeko zenbakiak hau du:
 - A. Proiektuaren IDa, bi digitu bertsiorako eta 6 digitu conting-aren IDrako
 - B. Zortzi letra larri jarraian
 - C. Zenbat conting aurkezten diren, hainbat digitu
 - D. Zenbaki aleatorio bat esleitzen da
- 76. "Reference Sequence" (RefSeq) datu-basea bilduma ondu bat da
 - A. RNA-sekuentziaz osatua
 - B. Proteina-sekuentziaz osatua
 - C. DNA-, RNA- eta proteina-sekuentziaz osatua, NCBIk sortua
 - D. Ez da NCBIren bilduma ondu bat
- 77. BLAST programa (Basic Local Alignment Search Tool) erabiltzen dugunean:
 - A. Azido nukleikoak bakarrik alderatu ditzakegu
 - B. Proteinak bakarrik alderatu ditzakegu
 - C. Sekuentzia (*Query*) sartu, eta zer datu-baseren aurka alderatu nahi dugun hauta dezakegu
 - D. rRNA/ITS datu-basearekin alderatzen dugu beti
- 78. BLASTek ematen digun *E-value* balioak alderaketaren esangura estatistikoa zenbatesten du
 - A. Zenbat eta handiagoa izan balio hori, orduan eta esangura estatistiko handiagoa
 - B. Zenbat eta txikiagoa izan balio hori, orduan eta esangura estatistiko handiagoa
 - C. Inoiz ez dago sekuentzia aztergaiaren tamainaren mende
 - D. Inoiz ez dago datu-basearen tamainaren mende
- 79. BLASTen emaitza grafikoan
 - A. Sekuentzia oso laburrak ez dira agertzen
 - B. Emaitza esanguratsuenak grafikoaren amaieran agertzen dira
 - C. Antzekotasun-barrak beltzez ikusten dira
 - D. Sekuentzia bakoitzaren antzekotasun-maila adierazten duen kolore-kode bat dago
- 80. NGS sekuentziekin lerrokatzeak egiten ditugunean, formatu hau erabiltzen dugu:
 - A. SAM/BAM
 - B. CSV
 - C. ABI
 - D. FASTA

- 81. Bakterioetan, haien arteko DNA-transferentzia honela gerta daiteke:
 - A. Konjugazioz, hau da, bakterio emaile baten eta hartzaile baten arteko zuzeneko kontaktu bidez
 - B. Transdukzioz, bakteriofago baten bidez
 - C. Eraldaketaz
 - D. Horiek guztiak metodo natural posibleak dira
- 82. NGS shoutgun bidez sekuentziatutako lehen genoma osoa panda erraldoiarena izan zen, estrategia honi jarraituz:
 - A. Irakurketa laburrak, 500 bp-tik beherakoak, conting-etan mihiztatzea
 - B. Conting-ak scafold-etan mihiztatzea paired-end irakurketen bidez
 - C. Partzialki ainguratutako *paired-end* irakurketen bidez *gap-*ak betetzea
 - D. Aipatutako hiru urratsei jarraituz
- 83. Eukariotoetan ORFak (Open reading frames) bilatzeko, softwareek hau eskaneatzen dute:
 - A. *Upstream* sekuentzia erregulatzaileak, exon-intron mugak eta kodonen alborapena
 - B. ApT uharteak eta CTG kodona
 - C. DNAren bi irakurketa-esparru posibleak
 - D. Aurreko erantzun guztiak zuzenak dira
- 84. *Saccharomyces cerevisiae* espezie eredu bat da, eta haren genomaren anotazioan genomika konparatiboa erabili zen, honetan oinarritua:
 - A. Zeluletan dauden plasmidoak
 - B. Espezie erlazionatuek antzeko genomak eta arbaso komun bat dituzte
 - C. Ez dago gene homologorik edo sekuentzia homologorik
 - D. Ez dira ezagutzen antzinako sekuentziak
- 85. UGENE erabilera libreko bioinformatikako plataforma bat da, eta tresna eta algoritmo ugari biltzen ditu era honetako sekuentziak aztertu eta bistaratzeko:
 - A. Sanger sekuentziazioko DNArenak, zeinen datuak hodei batean baitaude
 - B. Illumina tresnekin soilik lortutako sekuentziazioko DNArenak
 - C. Sanger sekuentziazioko eta sekuentziazio masiboko DNArenak
 - D. Bakterio aerobikoen baina ez-anaerobikoen DNArenak
- 86. R-ren ggplot2 paketearen grafikoek
 - A. D3.js baino datu-bistaratze malguagoa eskaintzen dute
 - B. Esplorazio-datuen bistaratzea eskaintzen dute
 - C. Ez dute eskaintzen esplorazio-datuen bistaratzea
 - D. Ez dute abantailarik eskaintzen Excel-en aldean

2021eko maiatzaren 21eko Gerentearen erabakia. Azterketaren data: 2022ko urtarrilaren 28an.

- 87. ggplot2 grafiko baten osagai nagusiak hauek dira:
 - A. Data, geometria eta mapatze estetikoa
 - B. gg grafikoen gramatika
 - C. Kaxa-diagramak eta histogramak
 - D. Dentsitate leunak eta Q-Q grafikoa

88. R-ren gplot funtzioa

- A. Bi bektoretan balioen sakabanatze-diagramarik sortzen ez duen funtzio bat da
- B. ggplot estiloarekin grafiko azkarrak sortzeko funtzio bat da
- C. ggplot-en grafiko konplexuak sortzeko funtzio bat da
- D. Bektore kategorikoak eta zenbakizkoak erabiliz kaxa-diagramarik sortzen ez duen funtzio bat da
- 89. Galaxy datu genomikoak aztertzeko plataforma libre bat da
 - A. Oso instalazio delikatua behar du
 - B. Ez du uzten sortutako scriptak partekatzen
 - C. Metagenomikako pipelineak bakarrik erabiltzen ditu
 - D. Web-ean oinarritua dago, eta modu lokalean instala daiteke edo online erabil daiteke
- 90. RNAseq-aren analisietarako, ezinbestekoa da erreferentziako genoma bat izatea
 - A. Erreferentziako genomarik gabe, RNAseq-aren analisiak ez du ezertarako balio
 - B. RNA gutxien ugarienak bakarrik analiza daitezke
 - C. Transkriptoen *de novo* berreraikuntza bat egin dezakegu software espezifikoekin
 - D. Sekuentzia oso luzeek ere ez dute balio analisi horietarako
- 91. miRNAren sekuentziazio-analisietan, hauek eragina izan dezakete
 - A. Urrats preanalitikoetan eta analitikoetan sartutako alborapenek
 - B. Bilatzen ari den miRNA motak
 - C. Laginak hartzen dituen teknikariak
 - D. Aurrekoetako batek ere ez
- 92. Hauek hartzen dira RNA txikitzat:
 - A. miRNAk eta tRNAk
 - B. snRNA eta snoRNA
 - C. Mt-tRNA eta YRNA
 - D. Haiek guztiak
- 93. ChIP seq-en analisietan, hau behar da:
 - A. Antigorputz ez-espezifikoak
 - B. Irakurketen mapaketa eta "peak calling"a
 - C. Oso irakurketa luzeak izatea
 - D. Haietako bat ere ez

Universidad Euskal Herriko del País Vasco Unibertsitatea

"SGlker-eko Goi-Mailako Teknikaria (Genomika)" Lan-Poltsa zabaltzeko hautatze-prozesua.

- 94. ChIP seq-en analisietan, GpC uharteak:
 - A. Negatibo faltsuak sor ditzakete
 - B. Positibo faltsuak sor ditzakete
 - C. Hondoko zaratatik kendu behar dira
 - D. Hondoko zaratara batu behar dira
- 95. WashU Epigenome Browser web-zerbitzari bat da, eta
 - A. Gizakien ChIPseq-en emaitzak soilik analizatzeko balio du
 - B. Legamien ChIPseq-en emaitzak soilik analizatzeko balio du
 - C. ChIPseq-en emaitzak zenbait ehunetako espresio genikoko datuekin integra ditzake
 - D. Ezin da erlazionatu kontserbazio ebolutiboko datuekin
- 96. Aipuen eta parekoek berrikusitako literaturaren datu-baserik handiena: zientzia-aldizkariak, liburuak eta biltzarretako aktak. Zein da?
 - A. Scopus
 - B. Pubmed
 - C. WoS
 - D. PSICODOC
- 97. Zein da bibliografia medikoaren arloko munduko datu-baserik erabiliena eta garrantzitsuena?
 - A. Scopus
 - B. Pubmed
 - C. WoS
 - D. PSICODOC
- 98. Analisi gidatuen sekuentziazio masibotik datozen SNV aldaerak anotatzeko, hau erabil daiteke:
 - A. ANNOVAR
 - B. Phred
 - C. UGT gene-familia
 - D. ATParen lotura-kasetea
- 99. Mutazio nukleotidikoak honela sailkatzen dira:
 - A. Sinonimoak eta ez-sinonimoak
 - B. Irakurketa-esparrua aldatzen duten delezioak edo txertaketak
 - C. Splicing-ekoak eta intronen eta promotorearen aldaerak
 - D. Aurreko guztiak
- 100. Gigabase baten neurriaz ari garenean, zer esan nahi dugu?
 - A. 1000 bp
 - B. 1000 kb
 - C. 1000 Mb
 - D. Aurrekoetako bat ere ez da zuzena

2021eko maiatzaren 21eko Gerentearen erabakia. Azterketaren data: 2022ko urtarrilaren 28an.

<u>GALDERA GEHIGARRIAK (aurreko galderaren batean akatsen bat edo</u> <u>planteamenduarekin desadostasunen bat izanez gero bakarrik erantzun</u> <u>beharrekoak)</u>

- 101. Guaninaz (G) eta zitosinaz (C) aberatsak diren DNAk:
 - A. Egonkorragoak dira tenperatura altuetan
 - B. Egonkortasun txikiagoa dute tenperatura altuetan
 - C. G-ren eta C-ren edukia ezin da kalkulatu
 - D. G-ren eta C-ren edukia beti bera da edozein DNAtan
- 102. Genoma baten eremu kodetzaileak aberatsagoak dira G-z eta C-z
 - A. Ez da egia
 - B. Egia da
 - C. Genoma motaren arabera
 - D. Landareen genometan bakarrik
- 103. Lerrokatze batetik abiatuta bi sekuentzia alderatzean, zer atera dezakegu?
 - A. Esanahi biologikoa
 - B. Esanahi estatistikoa
 - C. Esanahirik ez
 - D. Esanahi biologikoa eta estatistikoa
- 104. Lerrokatze baten barruko posizio bakoitzak zer puntuazio indibidual du?
 - A. Altua
 - B. Baxua
 - C. Negatiboa
 - D. Aurrekoetako edozein
- 105. Trantsizioa hau da:
 - A. Base puriko batetik base pirimidiko batera aldatzea
 - B. Base pirimidiko batetik base puriko batera aldatzea
 - C. Base puriko batetik beste puriko batera aldatzea eta, aldi berean, pirimidiko batetik beste pirimidiko batera
 - D. Base bikote bat aldatzea
- 106. Dot-Plot matrizeak puntu-matrizeak dira, eta sekuentzia-lerrokadura batean zer identifikatzeko balio digute?
 - A. Bikoizketak, inbertsioak, indelak
 - B. Mutazio puntualak
 - C. Transbertsioak
 - D. Aurrekoetako bat ere ez

- 107. Sekuentzia askoren lerrokatzeak zertarako balio digu?
 - A. Motibo edo zati oso kontserbatuak aurkitzeko
 - B. Egiturari buruzko iragarpenak hobetzeko
 - C. Genomen eta geneen eboluzioa ulertzeko
 - D. Aurreko guztiak
- 108. Konparatu nahi diren sekuentzien arteko distantzien matrize batean
 - A. Distantziek sekuentzien arteko desberdintasunak adierazten dituzte
 - B. Distantziak negatiboak dira
 - C. Zentzugabea da distantzia-matrizeak egitea
 - D. Diferentziak matrizera doitu daitezke
- 109. Clustal Omega sekuentziak lerrokatzeko gehien erabiltzen den programa libreetako bat da, baldin eta
 - A. Gutxienez 2 sekuentzia badaude FASTA formatuan izen desberdinekin
 - B. Gutxienez 3 sekuentzia badaude FASTA formatuan izen desberdinekin
 - C. FASTQ formatuko sekuentziak badira
 - D. FASTQC formatuko sekuentziak badira
- 110. Filograma bidezko irudikapen filogenetikoan
 - A. Adarren luzera beti berdina da
 - B. Adarren luzerak ez du inolako esanahirik
 - C. Adarren luzerak dibergentzia adierazten du, espezieen arteko distantzia genetikoa
 - D. Adarren luzerak denbora adierazten digu, ez distantzia genetikoa